Safe Water Storage in Hubli

Rabia Chaudhry

Alvin Chen

Trudy Garber

Lisa Veliz

Global Water & Health

Photo credit: HMS team

- •2.2 million deaths annually through diarrheal disease, mostly in children under 5 years.

 • Diarrheal disease exacerbated by contaminated water,
- poor hygiene, and inadequate sanitation.
 International focus on treatment, but not storage

India

Hubli

- 77 sq. miles (slightly larger than SF)
- 1.5 million people
- 2nd most
 populated urban
 area in the state
 of Karnataka

Issues specific to Hubli

team goals

Photo credit: Devadanam Talapathi

- Intermittent (every 5-12 days) water supply from a tap
 Families collect water in matkas and transfer it to the main steel container, which comes in 3 basic sizes
- Households have multiple containers-that sit on the ground or on the counter
- Hand-water contact in this region is common when getting water

Haath Mein Sehat (HMS)

Needs Assessment Results

Goal Statement

Photo credit: HMS team

Create a technology(-ies) that will minimize additional microbial contamination of drinking water after storage in homes.

Goal Progression

- Water quality based initial goal
- Shift from water quality testing to cultural acceptability
- Focus on human-centered design
- Local materials/ methods

Project Deliverables

Photo credit: HMS team

- Make proof-of-concept prototypes that can be used to collect feedback for cultural acceptability
- Prototypes must cover the range of existing containers/ conditions etc.
- Develop feedback/ monitoring & evaluation plan for summer

Stakeholders in depth

Photo credit: HMS team

- Stakeholders: adult women (mothers), adult men (heads of household), children, donors (Deshpande Foundation)
- Most restrictive users: adult women and children of 3 years and older

Design Criteria

 Operable by one person Adult Quick access: equivalent flowrate ~ 100 Women mL/s • Materials must be perceived as "clean". Low cost Maintain container integrity (no holes) Child Access point less than 3 feet Must be sturdy, durable, stable aged 3 Intuitive user interface year or older

Siphon Tap

Upper valve

Lower valve

- For containers at waist level
- Prototype cost ~ \$20
- Ready for acceptability feedback

Siphon Tap: Lessons Learned

Copper pipe bending

Fluid flow problems

background

Siphon Tap: Future Work

- Determine cultural acceptability
- Resolve air-water fluid flow issues
- Potentially use pre-fabricated valves
- Use different materials
- Determine cost-saving alternatives

Handwash Station

Promoting Good Hygiene and Protecting Stored Water

Handwash Station

foot pumpoperated

~3 ft. tall

Handwash Station

Benefits	Drawbacks
Dual purpose	Unsteady pumping
Foot pump limits hand- water contact	Leakage
Utilizes existing containers/bowls	Pump designed for air, not water
Inexpensive, standard materials	Low cost depends on materials sourcing
Sleek design	

Water Lift

- Uses a piston to elevate a water column
- •Addresses previous concerns about noise, usability, and responsiveness.
- •Key point is it can be constructed from basic materials and a low level of technology

Water Lift

Piston Valve

Valve Geometry

Valve Cap

- Failed Ideas: Using layered epoxy to create machinable valves
- A better adhesive release agent is needed

Dispenser

- Pre-packaged option
- Fully functional and locally supplied
- Ready for field testing with on-site retrofit

Dispenser: Future Work

- Determine cultural acceptability and desirability
- Determine on-site vessel retrofit options
- Look for alternative local suppliers

Prototype Summary

Siphon Tap	 Container at waist level Can be used with any container Prototype cost: \$20
	 One handed operation Dual purpose Prototype cost: \$30
Water Lift	 Container on floor Most suitable for straight walled vessels Prototype cost: \$15
Dispenser	 Pre-packaged engineered solution Cost: \$9 + cost of retrofit

Lids and Interface

Photo credit: Devadanam Talapathi

- The action of drawing water introduces forces onto the water in the container
- Certain designs must translate forces to the container to keep the device in place (Water lift, Dispenser)
- Siphon Tap and Hand-Wash Dispenser do not have this problem
- Lid interface must still prevent hands going into the container

Monitoring & Evaluation:User Preference

background

- 40 households:
 10 siphon tap, 10
 water lift, 10
 dispenser, 10
 control
- one week rotations
- surveys at conclusion of rotations
- focus groups

Photo credit: HMS team

Monitoring & Evaluation: Household Use?

Photo credit: HMS team

- Unannounced drop-ins
- Criteria for deciding if prototype is actually being used

Monitoring & Evaluation: Water Quality Testing

- Compare water quality between households that are using a prototype versus households that are not
- Compare water quality of households to source (tap)
- Water quality testing station set up in Hubli

Early Branding Ideas

- Sticker applied to lid retrofit
- Aesthetic appeal, branding potential, educational value

Conclusions

- Flexible designs to be modified in the field.
- Work is never done: this is just the 1st part of a hopefully long investigation into safe water in Hubli.
- Safe water storage is just one of many solutions.
- Local partnerships and a sustained presence are essential.
- The technology needs to be coupled with health education

Future Work: Alternatives

- Ladles
- Cheaper plastic prototypes
- Combined treatment + storage technologies
- Pure-It knockoff

Thank you!

Susan Addy Zachary Burt Tom Clasen Howdy Goudey Jill Luoto Johanna Mathieu Kara Nelson Jonathan Slack Devadanam Talapati **HMS Team**

Contact Information

Rabia Chaudhry rabiac@berkeley.edu

Alvin Chen <u>alvinchen@berkeley.edu</u>

Trudy Garber trudygarber@gmail.com

Lisa Veliz lisaveliz@gmail.com